Author Affiliations
Abstract
1 CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China
2 CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
3 Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
Phase-coherent multi-tone lasers play a critical role in atomic, molecular, and optical physics. Among them, the Raman opeartion laser for manipulating atomic hyperfine qubits requires gigahertz bandwidth and low phase noise to retain long-term coherence. Raman operation lasers generated by directly modulated and frequency-multipled infrared lasers are compact and stable but lack feedback control to actively suppress the phase noise, which limits their performance in practical applications. In this work, we employ a fiber electro-optical modulator driven by a voltage-controlled oscillator (VCO) to modulate a monochromatic laser and employ a second-harmonic generation process to convert it to the visible domain, where the beat note of the Raman operation laser is stabilized by controlling the output frequency of VCO with a digital phase-locked loop (PLL). The low-frequency phase noise is effectively suppressed compared to the scheme without active feedback and it reaches -80 dBc/Hz@5 kHz with a 20 kHz loop bandwidth. Furthermore, this compact and robust scheme effectively reduces the system’s complexity and cost, which is promising for extensive application in atomic, molecular, and optical physics.
phase-coherent laser quantum information trapped ion stimulated Raman transition phase-locked loop 
Chinese Optics Letters
2024, 22(2): 022702
Author Affiliations
Abstract
1 CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China
2 CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
3 e-mail: jmcui@ustc.edu.cn
4 e-mail: cfli@ustc.edu.cn
A narrow-linewidth laser operating at the telecommunications band combined with both fast and wide-band tuning features will have promising applications. Here we demonstrate a single-mode (both transverse and longitudinal mode) continuous microlaser around 1535 nm based on a fiber Fabry–Pérot microcavity, which achieves wide-band tuning without mode hopping to the 1.3 THz range and fast tuning rate to 60 kHz and yields a frequency scan rate of 1.6×1017 Hz/s. Moreover, the linewidth of the laser is measured as narrow as 3.1 MHz. As the microlaser combines all these features into one fiber component, it can serve as the seed laser for versatile applications in optical communication, sensing, frequency-modulated continuous-wave radar, and high-resolution imaging.
Photonics Research
2020, 8(10): 10001642
Author Affiliations
Abstract
1 CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China
2 CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
We have demonstrated a mode matching method between two different fibers by a hybrid thermal expanded core technique, which can be applied to match the modes of fiber-based Fabry–Pérot cavities. Experimentally, this method has achieved an expansion of the ultraviolet fiber core by 3.5 times while keeping fundamental mode propagation. With the experiment parameters, the fundamental mode coupling efficiency between the fiber and micro-cavity can reach 95% for a plano-concave cavity with a length of 400 μm. This method can not only have potential in quantum photonics research but also can be applied in classical optical fields.
060.2310 Fiber optics 120.2230 Fabry-Perot 140.3948 Microcavity devices 020.5580 Quantum electrodynamics 
Chinese Optics Letters
2019, 17(9): 090601

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!